SPECIFICATION

FOR

600V ETHYLENE PROPYLENE RUBBER INSULATED

POLYCHLOROPR	ENE SHEATH	ED FLEXIE	BLE CABLE	:
Code : 600V F-R	E-2PNCT-SX	42×2. 5n	$nm^2+6\times 1$.	5mm ²
Quantity				
Quantity				
Your Ref. No.				
10ui Rej. 110.	•••••			
Our Ref. No.				
Our Rej. 110.		A1		
Signed by		tour	Λ	
Digited by	\dots	· WYLZ //	/	

Engineering Dept. I
Electric Wire & Cable Business Unit

Takanobu Watanabe Manager

Proterial, Ltd.

Issue and revision record

REV.	Issue date	Item	Prepared by	Reviewed by	Approved by
	Oct. 30, 2023	FIRST ISSUE	K. Yowene K. Yamane	<i>h. Опо</i> N. Опо	T. Watanabe
		•			

1. Scope

This specification covers 600V Ethylene Propylene Rubber Insulated Polychloroprene Sheathed Flexible Cable, which is reference to Japanese Electrical Facility Regulation and Manufacturer's Standard.

2. Construction and materials

2. 1 Conductor

Conductor shall be stranded flexible conductor consisting of tinned annealed copper wires and tinned steel wires.
Suitable separator tape shall be applied over the conductor.

2. 2 Insulation

Insulation shall consist of ethylene propylene rubber compound. Nominal thickness shall be shown in the attached table.

Ave. thick. : not less than 90% of the nominal thickness Min. thick. : not less than 80% of the nominal thickness

2. 3 Proofed tape (1.5mm² cores only)

Rubber filled textile tape may be applied over the insulation

2. 4 Shield braid (1.5mm² cores only)

Shield braid consisting of tinned annealed copper wires shall be applied over the proofed tape.

A suitable tape shall be applied over the shield braid.

2. 5 Core identification

 $(2.5 \text{mm}^2 \text{ cores})$

The core identification shall be made by the color of the insulation. (Fig. 2)

 $(1.5 \text{mm}^2 \text{ cores})$

The core identification shall be made by the color of the tape over the insulation. (Fig. 2)

2. 6 Cabling of cores

The insulated conductors shall be cabled. Suitable fillers and binder may be applied at manufacturer's discretion, if necessary.

2. 7 Sheath

Sheath shall consist of black polychloroprene compound. Nominal thickness shall be shown in the attached table.

Ave. thick. : not less than 90% of the nominal thickness Min. thick. : not less than 85% of the nominal thickness

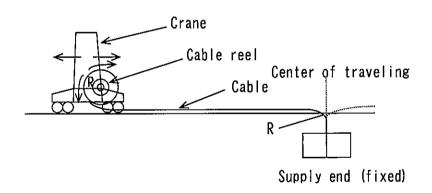
A straight line shall be marked on the surface of the sheath.

2.8 Dimension

The dimension of the cable shall be in accordance with the attached table.

3. Marking

Manufacturer's name and year of manufacture shall be marked by suitable method.


4. Inspection

Inspection shall be made on the following items prior to shipment.

Properties Standard to comply with Requirements		Requirements	Test interval
Construction and dimension	JIS C 3005 4.3	To comply with clause 2 and the attached Table 1	Every shipment
Withstand voltage test JIS C 3005 4.6 To withstand AC 3000V for 1 min.			
Conductor resistance	JIS C 3005 4.4	Not more than the value in the attached Table 2	First shipment
Insulation resistance	JIS C 3005 4.7	Not less than the value in the attached Table 2	

5. Guide to use

This cable is designed for crane installation of reel system (traveling) as shown below.

R : Permissible minimum bending radius

<u>Table 1 : Dimension</u>

[Code : 600V F- \overline{RE} -2PNCT-SX 42×2.5mm²+6×1.5mm²]

Item		Unit	Specified value		
	No. of conductor		42	6	
	Nominal cross-section area	mm ²	2. 5	1. 5	
Conductor	Construction	No. /mm	3/0. 32TST+ 49/0. 32TA	3/0. 32TST+ 30/0. 32TA	
	Approx. diameter	mm	2. 2	1. 8	
Nominal thickness of insulation		mm	0. 8	0.8	
Approx. thickness of shield braid		mm	1	0. 3	
Nominal thickness of sheath		mm	3. 6		
Approx. diameter of completed cable		mm	42. 5		
Maximum diameter of completed cable		mm	44. 7		
Approx. weight of completed cable		kg/km	2720		

TST: Tinned steel wire

TA: Tinned annealed copper wire

Table 2 : Characteristic

Table 2: Characteristic				
Item	Unit	Specified value		
Nominal cross-section area	mm ²	2. 5	1. 5	
Conductor resistance at 20℃	Ω/km	8. 21	13. 7	
Insulation resistance at 20℃	MΩ-km	500	500	
Permissible minimum bending radius	mm	430		
Permissible maximum pulling tension *	kN	7. 7		
Permissible maximum compression force **	kN/m	2. 9		

^{* :} In any case, pulling tension and compression force must not exceed this value. For safety, regular pulling tension should be 1/3 of the permissible maximum value. It is necessary to determine the pulling tension considering the compression force.

** : Compression force = Pulling tension / Bending radius

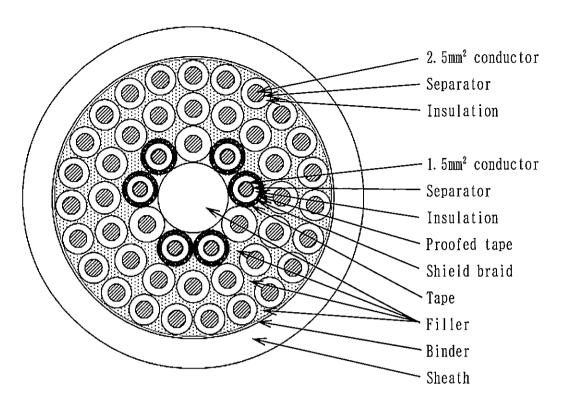


Fig. 1 Cable cross section

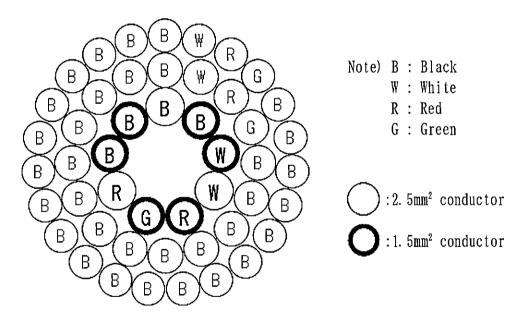


Fig. 2 Core identification